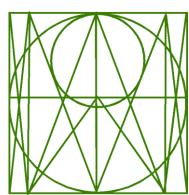
RATIONAL FUNCTIONS

member what we call a number like $\frac{2}{7}$? This is $oldsymbol{ol}}}}}}}}}}$ is the ratio of two integers. In a like manner, a rational function is the ratio of two special functions called polynomials. Since a rational function is essentially a fraction, we will have to avoid dividing by zero, which means the domain may not be all real numbers.



□ POLYNOMIAL FUNCTIONS

Each of the following is a polynomial function:

$$y=7$$
 (a $linear$ function — it's a horizontal line) $y=-3x+\sqrt{2}$ (a $linear$ function — it's a line with slope —3) $y=2x^2-x+9$ (a $quadratic$ function — it's a parabola) $f(x)=\sqrt[4]{2}x^3-x^2$ (a $cubic$ function) $P(x)=-\pi x^4+5x^2+8$ (a $quartic$ function) $Q(x)=\frac{2}{3}x^5+1$ (a $quintic$ function)

The key to any *polynomial function* is that all the exponents on the x come from W, the set of whole numbers {0, 1, 2, 3, ...}. The coefficients (the numbers in front of the variables), on the other hand, can come from anywhere in \mathbb{R} , the set of real numbers.

Consider the quartic polynomial

$$y = -2\pi x^4 + \frac{9}{10}x^3 - 17x^2 + \sqrt{2}$$
.

First, look at the exponents — they're all whole numbers. Even the last term of the polynomial, $\sqrt{2}$, can be written as $\sqrt{2}x^0$, and so even the exponent on this last term is a whole number. Thus, all the exponents (4, 3, 2, and 0) come from W, while all the coefficients $(-2\pi, \frac{9}{10}, -17, \sqrt{2})$ come from \mathbb{R} . Considering the definition of polynomial, the given function is indeed a polynomial.

Each of the following is <u>not</u> a polynomial function:

$$y = \frac{1}{x} \qquad \qquad (\frac{1}{x} = x^{-1} \text{ and } -1 \notin \mathbb{W})$$

$$y = \sqrt{x} \qquad (\sqrt{x} = x^{1/2} \text{ and } \frac{1}{2} \notin \mathbb{W})$$

$$f(x) = \frac{1}{\sqrt[3]{x}} \qquad (\frac{1}{\sqrt[3]{x}} = x^{-1/3} \text{ and } -\frac{1}{3} \notin \mathbb{W})$$

$$g(x) = |x - 1| \qquad \text{(no absolute values allowed around the } x)$$

$$E(x) = 2^{x} \qquad \text{(since } x \text{ is in the exponent, it can be any number)}$$

$$T(x) = \sin x \qquad \text{(it's on your calculator, but it's not a polynomial)}$$

$$y = \log x \qquad \text{(we'll learn this later -- it's not a polynomial)}$$

$$x^{2} + y^{2} = 25 \qquad \text{(it's a circle -- it's not a function of any kind)}$$

Homework

- 1. Explain why $y = \pi x^5 \sqrt{2} x^3 + \frac{1}{4} x 17.5$ is a polynomial function.
- 2. Explain why $h(x) = \sqrt[3]{5}x^4 \sqrt{2x} + \frac{1}{2}$ is <u>not</u> a polynomial function.

3. The highest exponent on the variable x in a polynomial is called the *degree* of the polynomial. Find the degree of each polynomial:

a.
$$y = \pi$$

b.
$$y = x^3 - 17x^2 + 8$$

c.
$$y = \sqrt{2}x^8 - \frac{\pi}{2}x^{10}$$
 d. $y = 7x + 5$

$$d. y = 7x + 5$$

- 4. a. What is the domain of any polynomial function?
 - b. T/F: Every parabola is a polynomial function.
 - c. T/F: Every non-vertical line is a polynomial function.
 - d. T/F: Every line is a polynomial function.

RATIONAL FUNCTIONS

A *rational function* is simply the ratio of two polynomial functions. If P and Q are polynomial functions, then $R = \frac{P}{Q}$ is a rational function.

A typical example of a rational function is $y = \frac{3x^2 + 7x - 9}{x + 8}$.

EXAMPLE 1: Graph:
$$y = \frac{1}{x-2}$$

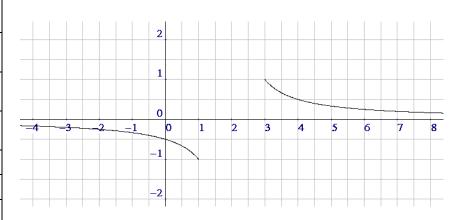
Solution: Since y is the ratio of a constant polynomial and a linear polynomial, we know that y is a rational function.

We begin our analysis of this rational function by determining the **domain**. In order that the fraction be defined, we must <u>not</u> divide by zero. What value of x makes the denominator zero? The value x = 2 will. (Just set x - 2 = 0 and solve for x.) Therefore, the domain is all real numbers except 2 -- that is, the domain is $\mathbb{R} - \{2\}$.

Intercepts come next. If x = 0, then $y = \frac{1}{0-2} = -\frac{1}{2}$. Thus, $(0, -\frac{1}{2})$ is the *y*-intercept. To find an *x* intercept, set y = 0. This gives $0 = \frac{1}{x-2} \implies 0(x-2) = \frac{1}{x-2}(x-2) \implies 0 = 1$, which has no solution. Thus, there are no *x*-intercepts.

Now for some ordered pairs that satisfy the formula $y = \frac{1}{x-2}$: If we plot these points and connect them with a smooth curve, we will get the following graph:

\boldsymbol{x}	\mathcal{Y}
-3	$-\frac{1}{5}$
-2	$-\frac{1}{4}$
-1	$ \begin{array}{r} y \\ -\frac{1}{5} \\ -\frac{1}{4} \\ -\frac{1}{3} \\ -\frac{1}{2} \end{array} $
0	$-\frac{1}{2}$
1	-1
1 2 3	Und.
3	1
4	$\frac{1}{2}$
5	$\frac{1}{3}$
6	$ \begin{array}{r} 1 \\ \hline 1 \\ \hline 2 \\ \hline 1 \\ \hline 3 \\ \hline 4 \\ \hline \hline 1 \\ \hline 5 \\ \end{array} $
7	$\frac{1}{5}$

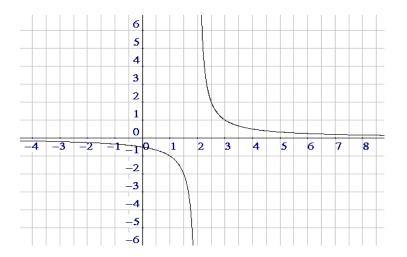


What some students do at this point is to simply connect the points (3, 1) and (1, -1) with a straight line. Talk about jumping to conclusions! Our domain of $\mathbb{R} - \{2\}$ implies that x cannot be 2 in this function; the straight-line trick won't work. So, we agree that a major chunk of the graph is missing. How do we get a better picture of the

graph? We try some *x*-values that are <u>near</u> 2:

$$(1\frac{1}{2}, -2)$$
 $(1\frac{3}{4}, -4)$ $(1\frac{7}{8}, -8)$ $(2\frac{1}{2}, 2)$ $(2\frac{1}{4}, 4)$ $(2\frac{1}{8}, 8)$

Adding these points to our previous attempt at a graph gives us a much better picture:



This graph has some really cool **limits**. Suppose we let x approach ∞ . The y-values are positive (the curve is above the x-axis), but are getting smaller and smaller, approaching zero. Thus, as $x \to \infty$, $y \to 0$. Now let x approach $-\infty$. The y-values are negative but are rising toward zero. Therefore, as $x \to -\infty$, $y \to 0$.

The number 2 seems to be an interesting x-value. Although x can never be 2 in this function, it looks like the curve is getting closer and closer to the vertical line x=2. In fact, if we let x approach 2 from the right, the curve grows taller and taller, and so we have the limit: As $x \to 2$ (from the right), $y \to \infty$. Now let x approach 2 from the left. This time, the curve drops rapidly toward negative infinity. This observation yields the limit: As $x \to 2$ (from the left), $y \to -\infty$. Let's summarize the four limits we've deduced:

As
$$x \to \infty$$
, $y \to 0$ As $x \to -\infty$, $y \to 0$
As $x \to 2$ (from the right), $y \to \infty$

As
$$x \to 2$$
 (from the left), $y \to -\infty$

From these four limits we can conclude that the **range** of the function is all real numbers except 0. That is, the range is $\mathbb{R} - \{0\}$.

Do you see that as you move far to the right or far to the left, the curve gets closer and closer to the x-axis? We say that the line y = 0 (which is the x-axis) is a *horizontal asymptote*.

Now look at the region of the graph near x = 2. The curve gets closer and closer to the vertical line x = 2 (in fact, on both sides of the vertical line). We call the line x = 2 a *vertical asymptote*.

EXAMPLE 2: Graph:
$$y = \frac{2x-1}{x+2}$$

Solution: First we find the **domain**. Recall that this function will be undefined when the denominator is zero, which occurs when x = -2. Thus, the domain is $\mathbb{R} - \{-2\}$.

Now let's explore the **intercepts**:

If
$$x = 0$$
, then $y = \frac{2(0) - 1}{0 + 2} = -\frac{1}{2}$. There's a *y*-intercept at $(0, -\frac{1}{2})$.
If $y = 0$, then $0 = \frac{2x - 1}{x + 2} \implies 2x - 1 = 0 \implies x = \frac{1}{2}$. So $(\frac{1}{2}, 0)$ is an *x*-intercept.

It's time for some more ordered pairs for this function. Use your calculator to verify each of the following:

$$(-1, -3)$$
 $(1, 0.33)$ $(3, 1)$ $(5, 1.29)$ $(10, 1.58)$ $(15, 1.71)$ $(20, 1.77)$ $(100, 1.95)$ $(1000, 1.995)$

What's happening as x grows very large? It appears that y is approaching 2. That is, as $x \to \infty$, $y \to 2$.

Now we'll let x go the other direction:

$$(-3, 7)$$
 $(-5, 3.67)$ $(-10, 2.63)$ $(-20, 2.28)$ $(-100, 2.05)$ $(-1000, 2.01)$

Rational Functions

These points show that as $x \to -\infty$, $y \to 2$.

Finally, here are some ordered pairs for x's near -2 (the only real number not in the domain):

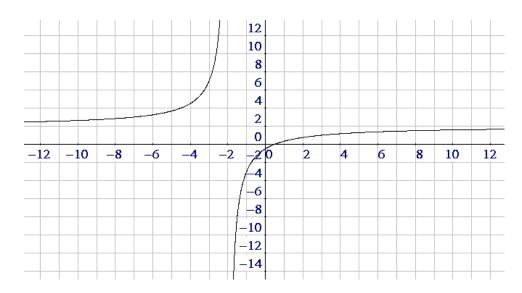
$$(-1.5, -8)$$
 $(-1.9, -48)$ $(-1.99, -498)$

Thus, as $x \to -2$ (from the right), $y \to -\infty$.

$$(-2.5, 12)$$
 $(-2.1, 52)$ $(-2.01, 502)$

Therefore, as $x \to -2$ (from the left), $y \to \infty$.

Plotting as many of the calculated points as possible, and taking into account the four limits we've found, the following graph emerges:



We can determine the **range** of the function by looking at the graph and seeing that y can be <u>any</u> value except 2. So the range is $\mathbb{R} - \{2\}$.

We can now be reasonably sure of the **asymptotes**. By recalling the limits described above or looking at the graph, we conclude that there's a vertical asymptote at x = 2 and a horizontal asymptote at y = 2.

EXAMPLE 3: Graph:
$$y = \frac{4}{1+x^2}$$

<u>Solution</u>: Why is this function rational? Because it's the ratio P/Q of two polynomial functions: the constant polynomial P(x) = 4 and the quadratic polynomial $Q(x) = 1 + x^2$.

To find the **domain**, set the denominator to zero to see what's <u>not</u> in the domain: $1 + x^2 = 0$. This equation has no solution in \mathbb{R} , since solving it leads to $x = \pm \sqrt{-1}$, which are not real numbers. In fact, for any value of x, the quantity $1 + x^2$ is <u>at least</u> 1 (why?), so it certainly can't be zero. Since the denominator can never be zero, there's nothing to be excluded from the domain, and therefore the domain is \mathbb{R} . We can also figure that the graph will <u>not</u> have a **vertical asymptote**.

Let's check for y-axis symmetry: Replace x with -x:

$$y = \frac{4}{1 + (-x)^2} = \frac{4}{1 + x^2}$$

It's the same equation; our graph has y-axis symmetry. This means we need to use only x's that are ≥ 0 — that is, only points to the right of the y-axis need to be plotted. The graph on the left side of the y-axis will be a mirror image of the right side.

Now we seek the **intercepts**. Set x = 0 to get y = 4, and so the y-intercept is (0, 4). Now set y = 0, giving

$$0 = \frac{4}{1+x^2} \implies 0(1+x^2) = \frac{4}{1+x^2}(1+x^2) \implies 0 = 4.$$

This absurd result indicates that the equation has no solution; hence, there are no *x*-intercepts.

It's time for some ordered pairs for this function:

$$(1, 2)$$
 $(2, 0.8)$ $(3, 0.4)$ $(4, 0.24)$ $(10, 0.04)$ $(200, 0.0001)$

Rational Functions

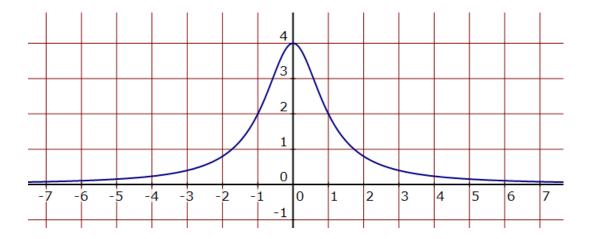
These points suggest the limit: As $x \to \infty$, $y \to 0$. This implies that y = 0 is a horizontal **asymptote**.

Here are some more ordered pairs, which allows us to see what happens as we approach the *y*-axis from the right:

 $(0.75,\,2.56)$ $(0.5,\,3.2)$ $(0.25,\,3.76)$ $(0.1,\,3.96)$ $(0.02,\,3.998)$ These points give us the limit:

As
$$x \to 0$$
 (from the right), $y \to 4$.

If we plot all the points calculated so far, and if we recall the *y*-axis symmetry, we get the following graph:



We determined at the outset that the domain of this rational function is \mathbb{R} . Is it clear from the graph that this is indeed the case?

The graph shows us that the **range** of the function is all real numbers between 0 and 4, excluding the 0 but including the 4. This set can be written $\{y \in \mathbb{R} \mid 0 < y \le 4\}$, or in interval notation as $\{0, 4\}$.

Homework

- 5. Consider the rational function in Example 2. Without referring to the graph, prove that *y* can have the value 2.01, but *y* can never have the value 2. Also without referring to the graph, verify that the graph does not have *y*-axis symmetry.
- 6. Find the domain:

a.
$$y = \frac{2x+7}{9}$$

b.
$$f(x) = \frac{2x-3}{4+x}$$

c.
$$g(x) = \frac{3x}{2x - 10}$$

d.
$$R(x) = \frac{x-1}{-7x+4}$$

e.
$$f(x) = \frac{x^2 - 9}{x^2 - 100}$$

f.
$$g(x) = \frac{8x-16}{x^2+25}$$

7. Find the intercepts:

a.
$$f(x) = \frac{x-4}{x-2}$$

b.
$$y = \frac{3}{5x - 15}$$

c.
$$y = \frac{2x+1}{x-3}$$

d.
$$g(x) = \frac{5-x}{6x+1}$$

8. Find the asymptotes:

a.
$$R(x) = \frac{8x+1}{4x-4}$$

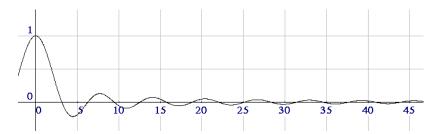
b.
$$y = \frac{2x-3}{2x+1}$$

$$c. \quad y = \frac{3x - 7}{x + 2}$$

d.
$$h(x) = \frac{2x+7}{4x-4}$$

- 9. Find the domain, the intercepts, and the asymptotes of $y = \frac{1}{4 + r^2}$.
- 10. Perform a complete analysis of the function $y = \frac{2}{x-3}$.

- 11. Perform a complete analysis of the function $y = \frac{3x-5}{x-2}$.
- 12. Perform a complete analysis of the function $y = \frac{2}{2+x^2}$.
- 13. Perform a complete analysis of the function $y = \frac{-1}{x+1}$.
- 14. Consider the graph



Explain why the horizontal line y = 0 (the *x*-axis) is a horizontal asymptote for the curve.

Practice Problems

- 15. Explain why $f(x) = \sqrt{7}x^{10} + \pi x^7 6x 1$ is a polynomial. What is its degree?
- 16. Explain why $y = 3x^5 \sqrt{x} + \pi$ is <u>not</u> a polynomial.
- 17. a. A horizontal line (is, is not) a polynomial.
 - b. The function $y = \frac{1}{x}$ (is, is not) a polynomial.
 - c. What is the degree of the polynomial $y = 7x \pi$?
 - d. Is a circle a polynomial?

18. Consider the rational function
$$y = \frac{7}{2x-8}$$
.

- a. Find the domain.
- b. Find all the intercepts.
- c. Find all the asymptotes.
- d. Calculate y if x = 4.1.
- 19. Find all the intercepts and asymptotes of $r(x) = \frac{8x+6}{2x-3}$ and graph.

Notation Interruption:

Instead of writing

As $x \to 1$ (from the right), $y \to 5$,

we'll write

As
$$x \to 1^+$$
, $y \to 5$

Similarly, instead of

As
$$x \to 6$$
 (from the left), $y \to \infty$,

we'll say

As
$$x \to 6^-$$
, $y \to \infty$

- 20. Graph $y = \frac{-2x 2}{x 1}$. As $x \to 1^+$, $y \to$ ___. As $x \to 1^-$, $y \to$ ___.

 As $x \to \infty$, $y \to$ ___. As $x \to -\infty$, $y \to$ ___.
- 21. Graph $y = \frac{5}{2+x^2}$. Discuss domain, range, symmetry, and asymptotes. As $x \to \infty$, $y \to$ ___. As $x \to -\infty$, $y \to$ ___. As $x \to 0^+$, $y \to$ ___. As $x \to 0^-$, $y \to$ ___.
- 22. True/False:

a.
$$y = \sqrt[3]{7}x^{10} - \pi x^3 + \sqrt{2}$$
 is a polynomial.

- b. $y = \frac{1}{x^5}$ is a polynomial.
- c. The graph of $f(x) = \frac{1}{2x+10}$ has a vertical asymptote at x = -5.
- d. The graph of $g(x) = \frac{10x+9}{5x-11}$ has a horizontal asymptote at y = 10.
- e. The range of the function $y = \frac{6}{1+x^2}$ is (0, 6].
- f. The above function has *x*-axis symmetry.
- g. The above function has a domain of $\mathbb{R} \{\pm 1\}$.
- h. For the graph of $y = \frac{3x+1}{x-\pi}$, as $x \to \infty$, $y \to 3$.

Solutions

- **1**. All coefficients are from \mathbb{R} , and all exponents are from \mathbb{W} .
- **2**. The middle term is $\sqrt{2} x^{1/2}$, and $\frac{1}{2} \notin \mathbb{W}$.
- **3**. a. 0
- b. 3
- c. 10
- d. 1

- **4**. a. ℝ
- b. False
- c. True
- d. False

5.
$$y = \frac{2x-1}{x+2} \implies 2.01 = \frac{2x-1}{x+2} \implies 2.01x + 4.02 = 2x-1 \implies x = -502$$
.

So, (-502, 2.01) is on the graph, and indeed y can be 2.01.

Now let's pretend that *y* could be 2; then

$$2 = \frac{2x-1}{x+2} \implies 2x+4 = 2x-1 \implies 4 = -1 \implies$$
 no solution. Thus, there

is no x which will make y = 2.

14

To test for *y*-axis symmetry, replace x with -x:

 $y = \frac{2(-x)-1}{-x+2}$ \Rightarrow $y = \frac{-2x-1}{-x+2}$, which is <u>not</u> the original formula, nor can

it be made to be the original formula. You test for origin symmetry.

6. a.
$$\mathbb{R}$$
 b. $\mathbb{R} - \{-4\}$ c. $\mathbb{R} - \{5\}$ d. $\mathbb{R} - \left\{\frac{4}{7}\right\}$ e. $\mathbb{R} - \{\pm 10\}$ f. \mathbb{R}

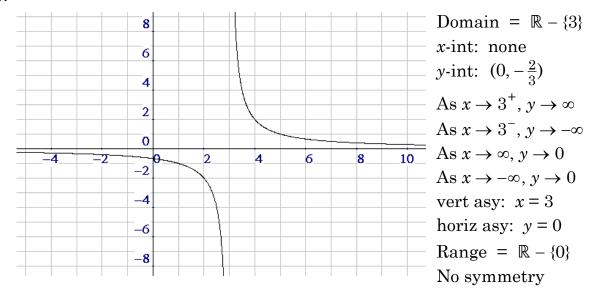
7. a.
$$(4, 0)$$
 $(0, 2)$ b. $(0, -\frac{1}{5})$ c. $(-\frac{1}{2}, 0)$ $(0, -\frac{1}{3})$ d. $(5, 0)$ $(0, 5)$

8. a.
$$x = 1$$
 $y = 2$ b. $x = -\frac{1}{2}$ $y = 1$ c. $x = -2$ $y = 3$ d. $x = 1$ $y = \frac{1}{2}$

9. Since the only way the formula can be messed up is by dividing by 0, and since the denominator can never be zero (verify this yourself), the domain is \mathbb{R} .

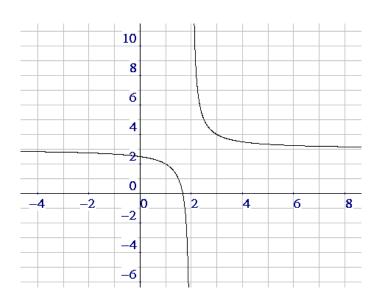
Setting x = 0 gives a y-value of 1/4, so the y-intercept is $(0, \frac{1}{4})$. If you set y = 0, you'll get no solution for y. Thus, there is no x-intercept. There are no vertical asymptotes, since the denominator is never zero. Letting x approach either ∞ or $-\infty$, y approaches 0. Thus, a horizontal asymptote is y = 0 (the x-axis).

10.



11.

15



Domain = $\mathbb{R} - \{2\}$

x-int: $(\frac{5}{3}, 0)$

y-int: $(0, \frac{5}{2})$

As $x \to 2^+$, $y \to \infty$

As $x \to 2^-$, $y \to -\infty$

As $x \to \infty$, $y \to 3$

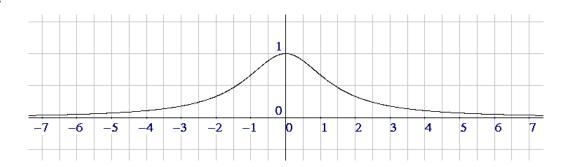
vert asy: x = 2

horiz asy: y = 3

Range = $\mathbb{R} - \{3\}$

No symmetry

12.



Domain = \mathbb{R} *x*-int: none

y-int: (0, 1)

Symmetry: y-axis

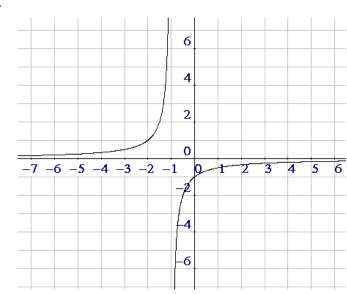
As $x \to \infty$, $y \to 0$

As $x \to -\infty$, $y \to 0$ horiz asy: y = 0

vert asy: none maximum point at (0, 1)

Range = $\{ y \in \mathbb{R} \mid 0 < y \le 1 \} = (0, 1]$

13.



Domain = $\mathbb{R} - \{-1\}$

x-int: none

y-int: (0, -1)

As $x \to -1^+$, $y \to -\infty$

As $x \to -1^-$, $y \to \infty$

As $x \to \infty$, $y \to 0$

As $x \to -\infty$, $y \to 0$

vert asy: x = -1

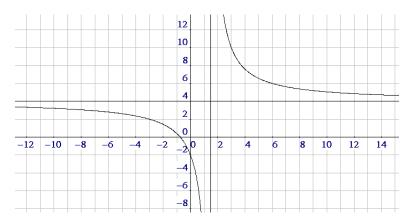
horiz asy: y = 0

Range = $\mathbb{R} - \{0\}$

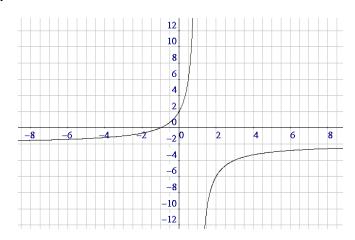
No symmetry

- **14**. Because of the limit: As $x \to \infty$, $y \to 0$. Even though the graph intersects its own horizontal asymptote infinitely often, the curve nevertheless continues to get closer and closer to the x-axis (the line y = 0), and this is ultimately what is meant by a horizontal asymptote.
- **15**. *f* is a polynomial because the coefficients are real numbers and the exponents (the 10, 7 and 1) are whole numbers. Its degree is 10.
- Look at the middle term; it can written as $x^{1/2}$, a term whose exponent **16**. is not from the whole numbers.
- b. is not $(1/x = x^{-1})$ c. 1 d. It's not even a **17**. a. is function, let alone the special function called a polynomial.
- **18**. a. $\mathbb{R} - \{4\}$
- b. (0, -7/8) c. x = 4 and y = 0
- d. 35

19. Intercepts: (0, -2) and $(-\frac{3}{4}, 0)$; vert asy: $x = \frac{3}{2}$; horiz asy: y = 4

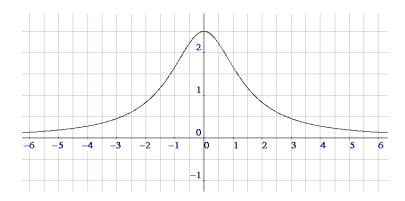


20.



Limits: $-\infty$; ∞ ; -2; -2

21.



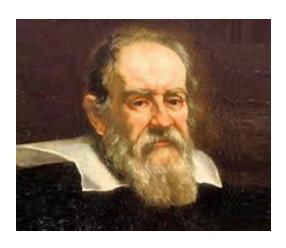
Domain = \mathbb{R} Range = $(0, \frac{5}{2}]$ y-axis symmetry No vert asy

Horiz asy: y = 0

Limits: 0; 0; $\frac{5}{2}$; $\frac{5}{2}$

22. a. T b. F c. T d. F e. T f. F g. F h. T

"The universe cannot be read until we have learned the language and become familiar with the characters in which it is written. It is written in mathematical language."



Galileo Galiliei